Performance evaluation of road detection and tracking
algorithms

D. Dufourd and A. Dalgalarrondo
DGA /Centre Technique d’Arcueil
16bis, av. Prieur de la Cote d’Or, 94114 Arcueil Cedex, France,
Delphine.Dufourd@etca.fr, Andre.Dalgalarrondo@etca.fr

ABSTRACT

In this paper, we present a methodology to assess the results
of image processing algorithms for unstructured road edges de-
tection and tracking. We aim at performing a quantitative,
comparative and repetitive evaluation of numerous algorithms
in order to direct our future developments in navigation algo-
rithms for military unmanned vehicles. The main scope of this
paper is the constitution of this database and the definition of
the assessment metrics.
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1 GOAL OF OUR WORK

In December 1999, the French defence procurement agency
(Délégation Générale pour ’Armement) has launched a
prospective program dedicated to ground robotics. Part
of this program aims at developing autonomous functions
for military unmanned vehicles navigation, such as au-
tonomous road following, beacon and vehicle tracking and
scene analysis. In this context, the Centre Technique
d’Arcueil (CTA) of the DGA is currently conducting an
evaluation of existing image processing detectors of un-
structured road edges. The goal of this evaluation is
to compare different road detection and following algo-
rithms in a reproducible and quantitative way so as to
direct future developments in navigation algorithms. It
should allow us to determine the most promising tech-
niques and possibly find orthogonal strengths between the
algorithms so as to conceive hybrid and potentially more
efficient methods. In this work, we plan to evaluate six
road edges detectors coming from: Centre de Morphologie
Mathématique (CMM) of the Ecole des Mines de Paris [3],
Laboratoire des Sciences et Matériaux pour I’Electronique
et PAutomatique (LASMEA) [22, 1], Laboratoire Cen-
tral des Ponts et Chaussées (LCPC) [7], the PG:ES com-
pany [23], and our laboratory [20].

The evaluation methodology is described in the follow-
ing sections. Section 2 presents previous studies on perfor-
mance evaluation. Section 3 focuses on our evaluation soft-
ware environment named SENA. Section 4 describes the

constitution of the image data base as well as the associ-
ated ground truth. Section 5 proposes different metrics to
evaluate the algorithms with respect to the ground truth.
Section 6 shows preliminary results concerning two road-
following algorithms. Finally, section 7 concludes and out-
lines future developments.

2 EVALUATION METHODOLOGIES

2.1 Assessment methods in image processing
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Figure 1: Classification of assessment methods.

In the last years, the image processing community has
started to develop evaluation methods in order to be able
to compare quantitatively the huge number of algorithms
available after these last decades of research. Such an ap-
proach is very important for those who use image process-
ing as a part of their research, like roboticists, since it pro-
vides a guide based on performance among the overwhelm-
ing available algorithms. However it should be noted that
such an approach is very recent. For instance, Heath [12]
has analyzed 21 papers on new contour detectors during
the years 1993-96; the results are rather startling: while
some papers do not even compare their method with other
detectors, other papers use only 2 test images. Up to very
recently, algorithms were not evaluated quantitatively, but
only qualitatively on various criteria such as the neat-
ness of their design or the sophistication of the underly-
ing mathematical theoretical tools. Most experiments are
conducted by human experts and lack any automation.
The performance of the algorithm depends then on the



know-how and the personal experience of the expert. For-
tunately, the situation is changing, following the animated
discussion of Jain and Binford [16], and there are always
more special issues in journals or conferences focusing on
image processing assessment issues.

Figure 1, taken from [6], shows a temptative general
classification of methods for image processing assessment.

Analytic methods do not need an explicit implemen-
tation of the algorithm and take into account its general
features such as its complexity, or the overall principles.
Such methods can be used in the development phase when
the designer has to choose which algorithms will be imple-
mented on the robot. They allow a comparison of the
algorithmic complexity and give an estimate of the time
to be allotted to every algorithm, when the computing re-
sources are known. The influence of the propagation of the
variance of the input data on the results of the algorithm
can also be estimated [11].

Empirical methods evaluate the algorithm by playing
with its inputs and studying the evolution of its various
outputs. The assessment of an algorithm can be done by
varying the intrinsic parameters of the algorithm or by
adding disturbances — noise, time-depending variation of
the grey levels, saturation...— on the inputs and analyz-
ing the evolution of the performance. Such an approach
aims at defining the “satisfactory operating domain” of
the algorithm. Such a knowledge is important in order
not only to compare and choose the right algorithm but
also to chain various algorithms, as it gives hints at the
propagation of errors. A weak sensitivity to disturbances
or modification of the tuning parameters is needed in an
automatic system. Some methods use contextual hope-
fully discriminating measures in order to decide whether
an input — in our case the current image — “suits” the
algorithm, i.e. is in the “satisfactory operating domain”.
Measures that are correlated with the result of the algo-
rithm are looked for.

Methods based on the measure of a difference between
the results of an algorithm and a reference solution, called
“ground truth”, allow an automation of the assessment
process. As shown in figure 2, the joint use of test images,
ground truth and metrics, that yield a measure of the dif-
ference between the results and the ground truth, provides
quantitative evaluation of the algorithms. Whereas the
ground truth is generated by a human expert or by a ref-
erence algorithm, the variation of the tuning parameters of
the algorithm follows predetermined ranges and sampling
and can be fully automated, as well as the analysis of the
results, as soon as the metrics have been explicitly given.
This is the method we have selected for our assessment.

Finally, empirical evaluation methods without ground
truth are based on the availability of empirical measures
of what a “correct result” should be [6]. Such measures
are built following intuition and/or successive experiments
during the design phase, where ground truths may be used.
Of course such measures are very dependent on the task
to be performed by the algorithm but they can be autom-
atized. For example, in [19], we present a robot control

architecture which uses evaluation mechanisms in order
to select automatically the most appropriate perception

algorithm.
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Figure 2: How to assess an algorithm when ground truth
is available.

2.2 Road following algorithms evaluation

Although a wide variety of vision-based road following al-
gorithms have been proposed and implemented over the
last two decades, few techniques have been developed to
assess their quality. Far too many articles rely on quali-
tative results, exhibiting a handful of example images to
illustrate the performance of the algorithms while real ap-
plications would mean processing millions of images with-
out making any serious error [17].

In many cases, the efficiency of road following algo-
rithms is only characterized by the speed achieved by the
whole autonomous system. For instance, in the field of au-
tonomous lateral control on highways and marked roads,
numerous experiments consist in driving a few thousands
of kilometers and providing statistics about the perfor-
mance of the system : maximum time elapsed between two
manual interventions, average and maximum speed, dis-
tance between the vehicle and the lane, etc [5]. However,
using such global characterizations, it seems difficult to de-
termine exactly what makes the system efficient and what
could be improved to make it better : is the autonomous
vehicle fast because the road following algorithm has been
implemented efficiently using powerful computationnal re-
sources, because this image processing algorithm is very
accurate and robust or because the control laws of the
vehicle are well-designed?

Algorithms performing 3D reconstruction of the road
have been evaluated in different ways. Guiducci performed
indirect numerical tests on 1000 images, comparing the
road width and vehicle speed estimated by his algorithm
with their real values [10]. The actual road width was
measured manually and the speed was given by the ve-
hicle speedometer. However, these global test measures
characterize the whole system, including the 3D road and
vehicle models, while more direct measures would proba-
bly be helpful to improve the image processing algorithms
more specifically. DeMenthon performed tests on both
synthetic and real images [8]. Whereas the 3D profile of
the synthetic data is known, the profile for the real data
is reconstructed manually using a fusion between distance



and video images. A specific task-oriented metric is used
to assess the results of the algorithm: a reconstructed road
is labelled “navigable” if the tracks of a two meter-wide
vehicle following the centerline of the reconstructed road
stay between the edges of the actual road over the whole
reconstruction and do not cut these edges. However, man-
ual 3D reconstruction is too time-consuming if the evalua-
tion is to be performed on numerous data. Therefore, if a
manual ground truth is to be used, it seems more realistic
to operate directly in the 2D image space rather than in
the real 3D world.

Finally, a few research studies focus on automating the
measurement of ground truth for the evaluation of vision-
based lane sensing. A NIST report on performance eval-
uation for robotic vehicles [13] proposed a specific device
composed of a side-looking camera and a separate vision
system to measure the offset between the vehicle and the
lane. Using a detailed calibration of their imaging sys-
tem and spectral measurement of the ambient illumina-
tion and scene, Everson et al. [9] generated images simu-
lating various rates of precipitation. The metric used to
evaluate their lane-sensing system consists of the variance
lane centering behavior as a function of precipitation level.
Kluge also performed a pilot study in order to get some
insight into the issues involved in automatic performance
evaluation of lane-sensing algorithms [17]. He selected a
well-defined aspect of system performance in a single class
of lane-sensing techniques. The ground truth was mea-
sured automatically using a reference algorithm and its
correctness was hand checked on the 1800 windows of the
data set. One can notice that automatic ground truth
measurement requires a reference algorithm and possibly
a specific equipment to measure the road edges, which is
easier in the case of road marking detection than in the
case of unstructured road edges detection with various en-
vironmental conditions.

3 THE SENA PLATFORM

Our laboratory is interested in various information and
intelligence military systems which use image processing.
Current researches address the evaluation of satellite im-
age registration, infrared image segmentation, image fu-
sion and interpretation. Applications of these algorithms
on military systems must present specific qualities in order
to cope with extreme battlefield situations. This leads to
different system testings and notably to the development
of a general evaluation architecture called SENA (Systeme
pour 'EvaluatioN d’Algorithmes).

SENA is a customized software environment for fast al-
gorithm implementation and evaluation of a wide range of
applications. It helps in assembling image processing op-
erators and replaying the experiments on a large amount
of images. In a sequence of operators, tools for measuring
or visualizing partial results can be incorporated. These
tools can also be considered as image processing opera-
tors. Thus, SENA is able to organize and execute a se-

quence of operators of different types (source code, shell
scripts, binaries, libraries) and origins (operators that were
developed specifically or not for the platform). The only
constraint is that all the operators must be executed on
the same host computer. Practically, SENA runs on a
SMP computer (SUN Enterprise 10,000 with 32 proces-
sors) to cope with huge amounts of data and important
range variation of the algorithms parameters. SENA has
been developed by Cril Ingenierie under CTA specification
and supervision. Among other graphical software environ-
ments able to construct and execute sequences of image
processing operators, Khoros is probably the best known.
However, SENA is most likely the only platform allowing
simultaneous use of various types of operators (scripts,
binaries...), definition of cyclic graphs of operators, auto-
matic parallel execution of the assessment process on range
of data and parameters and coupling with a database.

4 DATABASE CONSTITUTION

The database includes the images that will compose the
input of the image processing algorithms and the ground
truth suited to the final task to assess. For our purpose, we
need images of unstructured roads and trails taken from
a ground vehicle whose size and mobility are close to the
targeted UGV. Collecting these images is relatively easy
and cheap with nowadays technologies. The two main dif-
ficulties are the representativity of the images, in relation
with the missions and the environment of the UGV, and
the constitution of the ground truth.

The first step is the specification of the hardware to
grab images on the proving ground. This includes the ve-
hicle, the camera (position, field of view, frame rate, reso-
lution, type of sensor...), the grabbing device, the storage
media and the image files coding. Specification of noise
and saturation levels on the images and general ranges of
climatic or illumination conditions can be added. If image
calibration is needed by some algorithms, the acquisition
of images of reference scenes must be specified. Moreover,
data concerning the speed and the attitude of the vehicle
can be attached to each image, in order to feed the en-
vironment or vehicle models which may be used by some
algorithms.

The second step is the specification of film scripts for
the image acquisition. In our case, we specify two kinds of
scenarios: general ones with an increasing difficulty level
for road edges extraction and special scenarios which are
dedicated to road and trail particularities. In the first
case, one gets homogeneous sequences of images in or-
der to assess an algorithm all along a sequence without
risking an irreparable failure on some images. In the sec-
ond case, it is possible to evaluate the algoritm behavior
in harsh conditions. The special scenarios must provide
known difficulties for the algorithms like puddles, hairpin
bend, abrupt road widening, slough, parked vehicles on
the roadsides, changing soil, transversal and longitudinal
road markings, etc. In practice, we defined six general sce-



narios and twelve special scenarios. The general scenarios
belong to two categories: tarmac roads and gravel-mud
roads. There are three scenarios for each category, with
an increasing level of difficulty. Each scenario must cor-
respond to a specific location on the proving ground in
order to be recorded in about four different illumination
and weather conditions. Some image sequences recorded
at night with the vehicle lights and with a FLIR camera
are also defined. The length of the image sequences may
vary between 60 and 120 s which corresponds to a distance
between 500 and 1000 m for a vehicle travelling at a mean
speed of 30 km/h. As for the twelve special scenarios, the
length of the image sequences is shorter (about 20 to 30s)
in order to isolate each difficulty.

The image acquisition is currently being performed in
DGA testing facilities situated near Angers. Figure 3
shows examples of images taken at this location. This
first version of the database will count about 20,000 im-
ages of roads and trails. This amount accounts for the
second main difficulty of the construction of this database.
Indeed, on each image a human expert has to define the
ground truth i.e. to draw the road edges on the images.
For that particular task, we wrote a specification which
contains rules to follow in order to decide where the road
edges are in a given image. Then, in order to facilitate
this long and dull job, we have created a program with a
dedicated graphical interface which manages the name and
numbering convention of the images and ground truth files
of a sequence and allows, on a new image, an easy modi-
fication of the grountruth defined on the previous image.

5 EVALUATION METRICS

Hoover et al. [14] underlined the need for multiple metrics
in image processing algorithms assessment, so that users
can consider different aspects of the algorithms and choose
the one which is best suited to their application. Follow-
ing this point of view, we propose eight different metrics
aiming at assessing geometrical accuracy as well as a good
global correspondence between the ground truth and the
output of the algorithms. As mentionned before, extract-
ing 3D references from numerous data appears extremely
time-consuming so that we have decided to work in the 2D
image space. Therefore, our metrics are also computed in
the 2D image space and do not consider the 3D real world
data such as the width of the road or the pitch angle of
the vehicle.

Among the various metrics available, we can distin-
guish contour-oriented metrics and region-oriented met-
rics, which reflect the dual approaches to image segmen-
tation.

5.1 Contour-oriented metrics

Before computing most contour-oriented metrics, we need
to perform a matching procedure between the reference
road edges and the result of the algorithm. Indeed, we

have to determine which parts of the extracted road edges
correspond to given parts of the reference road eges. We
chose the so-called “buffer method” described by Wied-
mann et al. [25] in the context of automatic road axes
extraction from aerial images. Using this technique, every
portion of the extracted road boundary lying within a cer-
tain distance (i.e. the size of the buffer) from the reference
boundary is considered as matched.

A survey realized in our lab by Capolunghi and Rop-
ert [6] defines five different categories for common assess-
ment measures, as listed below.

5.1.1 Measures of classification/detection errors

These measures consist in counting the number of pixels
that have been misclassified by the algorithm and extract-
ing detection and cover rates as well as statistical mea-
sures. Our first three metrics correspond to this category.

The completeness metric computes the difference be-
tween the length of a result judged as valid (within the
buffer tolerance) and the length of the ground truth. It
enables us to determine whether the algorithm has man-
aged to find the whole road or only a small part of it. More
formally, using the notations and configuration of Fig. 4,
this metric is defined by:

length(BC)
= ——= 0,1
'™ length(AD)’ mi € [0,1]

The correction metric determines what portion of the
result lies within the tolerance area. Using the notations
and configuration of Fig. 4, it is defined by the following
formula:

length(GF)
= ——= €[0,1
me length(GE)’ m2 € [0,1]

Finally, a quality metric combines the previous ones.
The quality of a road edge estimated by the algorithm is
regarded as good if the edge lies within the tolerance area
and “explains” most of the reference edge. More precisely,
this quality can be expressed as: m3z = m; X ma, mg3 €
[0,1].

Wiedmann et al. defined similar metrics using notions
of true positive, false positive and false negative for the
output of the algorithms [25].

5.1.2 Measures of localization errors

Measures of localization errors compute a distance be-
tween two sets of points A and B (in the case of contours,
one can consider that these sets are composed of the pixels
that form the contour). Among them, we can mention the
figure of merite proposed by Pratt [21], the Hausdorff dis-
tance and the Baddeley distance [2] . Huang and Dom [15]
also proposed to evaluate the divergence between A and
B by distance distribution signatures which correspond to
distance histograms. Different statistics can be extracted



Figure 3: Examples of road images of the DGA testing facilities near Angers.

from these histograms such as the mean value and vari-
ance. We have opted for this last measure computing the
average distance between the reference and result edges:

_ Egdist(al gorithm, ground truth)
N length(GE) ’

my ma € [0, 00[

Besides, we can compute other statistics concerning
these distances such as variance, as well as maximal and
minimal distances (which is akin to the Hausdorff dis-
tance).

5.1.3 Error classification

The evaluation of edge detectors is sometimes based on a
classification of their errors. For example, the estimated
edges can be labelled as well-detected contours, over- or
under-segmented contours, missed contours and contours
due to noise. Completeness and correctness illustrate some
of these notions but we could also introduce new metrics
involving “redundancy” [25] for instance. Fig. 4 illus-
trates this notion of redundancy: the length of the thick
result edge far exceeds the length of the reference edge.
However, the ground truth does not present many singu-
larities and the algorithm results are usually smoothed by
linear regressions or hyperbolic approximations, so that
this redundancy metric potentially does not provide much
information.

5.1.4 Parametric approach

The measure classes described so far are computed pixel
by pixel from the output data. Conversely, the paramet-
ric approach consists in representing the data which we
intend to compare by a few specific features. As a result,
the output data are reduced to a single parameter vector.
For instance, Strickland proposed linear combinations of
local measures related to the shape of the contour (conti-
nuity, regularity and thickness), its location with respect
to the ground truth and to contours due to noise [24]. The
first three criteria are not well-adapted to our application
since the contours provided by the evaluated algorithms
are usually one-pixel thick, continuous and regular. The
fourth criterion related to location is taken into account by

the measures of localization errors described above. How-
ever, the last criterion is not used because we have not
measured the noise levels in the images.

5.1.5 Non-scalar measures

Non-scalar measures can be linked to statistical ap-
proaches. For instance, Huang and Dom proposed dis-
tance histograms [15]. However, to avoid multiplying the
measure data, we only keep the mean value for the his-
togram, and possibly the variance as well as the extreme
values. Performance diagrams such as the Receiver Oper-
ating Characteristic (ROC) curves are often used to illus-
trate algorithms performance. We can draw similar curves
representing 1 — mo (which corresponds to a false positive
rate) with respect to 1 —m; (corresponding to a false nega-
tive rate) for different values of the algorithm parameters.

5.2  Region-oriented metrics

Contour-oriented metrics provide detailed information
about the geometric accuracy of the algorithms. How-
ever, in sharp turns or on very irregular paths, pessimistic
algorithms using a very simple road model (a triangle for
example) risk being severely penalized by these metrics
even if they find a drivable area within the boundaries of
the real road. As a result, we have defined several metrics
based on surfaces.

Whereas edge-oriented metrics need a preliminary
matching process, region-based metrics can be applied di-
rectly since there is no ambiguity concerning their corre-
spondence. However, in the general case, the road detec-
tors provide open contours for the road, which means that
we need to perform a closing procedure. We have decided
to close the road region through linking the left and right
upper ends as well as the left and right lower ends.

Region-oriented metrics can be divided into the same
categories as contour metrics.

5.2.1 Measures of classification/detection errors

Among the metrics measuring frequencies of incorrect clas-
sification of pixels in the image, we can mention the Ham-
ming distance [15] and the Vinet distance. However, such
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Figure 4: (left and center) Notations for metrics. (right) An example of redundancy.

metrics are designed to deal with region segmentation al-
gorithms, and thus require a matching step between the
result and the ground truth regions. Therefore, we can
chose more simple measures (see Fig. 4 for the notations):
a completeness metric:

— |Salgorithm n Sground truthl

ms , My € [07 ]-]
|Sground truth|
and a correctness metric:
me = |Salgorithm n Sground truthl ., me € [0, 1]

|Salgom'thm |

We can notice that combining ms and mg, we can com-
pute the Vinet distance. Besides, we can define m7; as a
combination of mys and mg: my; = mz x mg, my € [0,1],
and an overall quality measure: mg = mg3,,,, Xm3,,_,, X
mz, mg € [0,1].

5.2.2 Error classification

Hoover et al. proposed an error classification for extracted
regions in the scope of image segmentation evaluation.
They distinguished correct detection, over- and under-
segmentation instances, missed detections and noise [14].
Once more, this classification is better adapted to multi-
ple region matching rather than to a comparison between
two regions. Nevertheless, we can notice that the basic
values computed to perform this classification are based
on boolean operations between pixel sets and correspond
to combinations of ms and mg.

5.2.3 Parametric approaches

Finally, concerning parametric approaches, various fea-
tures of the regions can be computed and compared: sur-
face, perimeter, moments, main axes, etc. Surface and
perimeter are also taken into account in the previous mea-
sures while moments and main axes (or road axes) may
provide interesting additional information.

6 PRELIMINARY
EXPERIMENTATION

The image database has not been completly delivered and
the algorithms are currently being integrated into SENA.
We made a preliminary experiment concerning the met-
rics using two algorithms and one sequence of 224 images.
Figure 5 shows the ground truth and the results of both
algorithms on the same image. Figure 6 shows the values
of the metrics along the image sequence.

Surface-based metrics (ms and mg) appear far more
stable than contour-oriented metrics, which is probably
due to the severity of the “buffer method” for small val-
ues of the buffer width (12 pixels in our experiment, for
768 x 576 pixel images). The peaks in the diagrams in-
dicate particular images for which the algorithms failed.
For instance, the right edge determined by algorithm 1
on image 123 (see Fig. 5) presents poor values for my,
meo, my and mg. Algorithm 1 faces difficulties on images
81, 89, 90 and 103 as well (see m; and my), although my
indicates that these errors are minor compared to image
123. The end of the sequence presents a greater challenge
for the algorithms since the vehicle arrives on a cross-
road. As a result, the detectors tend to select a portion of
the road which belongs to the intersection and which was
not marked by the operator: completeness remains correct
while correctness decreases. However, on the rest of the
sequence, correctness is better than completeness, which
means that part of the road is missed by the algorithms.
The road detectors indeed have trouble finding the hori-
zon line, so that the estimated boundaries do not extend
to the upper part of the road. A metric that would only
consider the lower part of the image would enable us to as-
sess the quality of the algorithm whatever the estimation
of the horizon line.

7 CONCLUSION

In this paper, we have described the complete methodol-
ogy and various tools that will be used to assess the quality



Figure 5: Groundtruth (left) and results of algoritm 1 (center) and 2 (right) on image 123.
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Figure 6: Examples of measures.

of unstructured road edges extraction algorithms. Within
the next months, the image database should be completed
and all the algorithms will be integrated into the SENA
platform. This will allow us to apply our methodology to
the whole data and compare the different edge detection
techniques. Henceforth, this work offers many perspec-
tives:

e Besides road edge detectors, we plan to apply our
methodology to the evaluation of other vision-based
algorithms which aim at enhancing the navigation
capabilities of autonomous ground vehicles. Among
them, we have selected beacon and vehicle tracking as
well as image segmentation. The algorithms which we
plan to test belong to three French laboratories: Lab-
oratoire des Sciences et Matériaux pour I’Electronique
et I’Automatique (LASMEA), Laboratoire d’Analyse
et d’Architecture des Systémes (LAAS-CNRS) and
our laboratory.

e So far, we have defined six different metrics for the
automatic assessment of edge detectors. However, we
may come to modify these metrics if it turns out that
they do not account for some qualitative phenomena
observed by the operator during the evaluation. In-
deed, Ropert and Capolunghi underline the necessity
of a good correlation between the human judgement
and the behavior of the metric [6].

e To go further, we could even use a specific method-

ology for choosing the metrics. Ropert et al. pro-
posed such a methodology in the practical case of
default detection in gammagraphy images of welded
metal plates [4]. Letournel described a more sophis-
ticated protocole in the field of aerial images inter-
pretation [18]. She performed a statistical analysis in
order to detect a relationship between objective met-
rics (given by mathematical formulas) and subjective
metrics given by a human judgement (manual mark-



ings). Such an analysis would definitely be worth try-
ing in the scope of our project.

Among other metrics that could be tested, we can
imagine measures which would be more oriented to-
wards the specific task to be performed by the vehicle,
such as the metric described by DeMenthon [8].

Finally, it seems interesting to introduce metrics that
would allow us to characterize more accurately the
difficulty of the test images (signal to noise ratio or
more sophisticated metrics such as the ones proposed
by Kluge [17]). Such metrics should help us to build a
more representative video database for the evaluation.
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